Problems for Session A

The 85th William Lowell Putnam Mathematical Competition 2024

A1 Determine all positive integers n for which there exist positive integers a, b, and c satisfying

$$2a^n + 3b^n = 4c^n.$$

A2 For which real polynomials p is there a real polynomial q such that

$$p(p(x)) - x = (p(x) - x)^2 q(x)$$

for all real x?

A3 Let S be the set of bijections

$$T: \{1, 2, 3\} \times \{1, 2, \dots, 2024\} \rightarrow \{1, 2, \dots, 6072\}$$

such that T(1,j) < T(2,j) < T(3,j) for all $j \in \{1,2,\ldots,2024\}$ and T(i,j) < T(i,j+1) for all $i \in \{1,2,3\}$ and $j \in \{1,2,\ldots,2023\}$. Do there exist a and c in $\{1,2,3\}$ and b and d in $\{1,2,\ldots,2024\}$ such that the fraction of elements T in S for which T(a,b) < T(c,d) is at least 1/3 and at most 2/3?

- **A4** Find all primes p > 5 for which there exists an integer a and an integer r satisfying $1 \le r \le p-1$ with the following property: the sequence $1, a, a^2, ..., a^{p-5}$ can be rearranged to form a sequence $b_0, b_1, b_2, ..., b_{p-5}$ such that $b_n b_{n-1} r$ is divisible by p for $1 \le n \le p-5$.
- A5 Consider a circle Ω with radius 9 and center at the origin (0,0), and a disk Δ with radius 1 and center at (r,0), where $0 \le r \le 8$. Two points P and Q are chosen independently and uniformly at random on Ω . Which value(s) of r minimize the probability that the chord \overline{PQ} intersects Δ ?
- **A6** Let c_0, c_1, c_2, \ldots be the sequence defined so that

$$\frac{1 - 3x - \sqrt{1 - 14x + 9x^2}}{4} = \sum_{k=0}^{\infty} c_k x^k$$

for sufficiently small x. For a positive integer n, let A be the n-by-n matrix with i,j-entry c_{i+j-1} for i and j in $\{1,\ldots,n\}$. Find the determinant of A.

maa.org/putnam

The 85th William Lowell Putnam Mathematical Competition 2024

- **B1** Let n and k be positive integers. The square in the ith row and jth column of an n-by-n grid contains the number i + j k. For which n and k is it possible to select n squares from the grid, no two in the same row or column, such that the numbers contained in the selected squares are exactly $1, 2, \ldots, n$?
- **B2** Two convex quadrilaterals are called *partners* if they have three vertices in common and they can be labeled ABCD and ABCE so that E is the reflection of D across the perpendicular bisector of the diagonal \overline{AC} . Is there an infinite sequence of convex quadrilaterals such that each quadrilateral is a partner of its successor and no two elements of the sequence are congruent?



B3 Let r_n be the *n*th smallest positive solution to $\tan x = x$, where the argument of tangent is in radians. Prove that

$$0 < r_{n+1} - r_n - \pi < \frac{1}{(n^2 + n)\pi}$$

for $n \geq 1$.

B4 Let n be a positive integer. Set $a_{n,0} = 1$. For $k \ge 0$, choose an integer $m_{n,k}$ uniformly at random from the set $\{1, \ldots, n\}$, and let

$$a_{n,k+1} = \begin{cases} a_{n,k} + 1, & \text{if } m_{n,k} > a_{n,k}; \\ a_{n,k}, & \text{if } m_{n,k} = a_{n,k}; \\ a_{n,k} - 1, & \text{if } m_{n,k} < a_{n,k}. \end{cases}$$

Let E(n) be the expected value of $a_{n,n}$. Determine $\lim_{n\to\infty} E(n)/n$.

B5 Let k and m be positive integers. For a positive integer n, let f(n) be the number of integer sequences $x_1, \ldots, x_k, y_1, \ldots, y_m, z$ satisfying $1 \le x_1 \le \cdots \le x_k \le z \le n$ and $1 \le y_1 \le \cdots \le y_m \le z \le n$. Show that f(n) can be expressed as a polynomial in n with nonnegative coefficients.

B6 For a real number a, let $F_a(x) = \sum_{n \ge 1} n^a e^{2n} x^{n^2}$ for $0 \le x < 1$. Find a real number c such that

$$\lim_{x \to 1^{-}} F_{a}(x)e^{-1/(1-x)} = 0 \quad \text{for all } a < c, \text{ and}$$

$$\lim_{x \to 1^{-}} F_{a}(x)e^{-1/(1-x)} = \infty \text{ for all } a > c.$$